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1 Axioms
The axioms for a cohomology theory are given by dualising the homology axioms. In particular just
turn all arrows around.

2 Definition
Here we will define cellular / singular cohomology. First form the chain complex (we will be ambiguous
about which ones)

· · · → Cn
∂−→ Cn−1 → · · ·

then apply Hom(−, G) to get another “co”chain

· · · ← Hom(Cn, G)
Hom(∂,G)←−−−−−− Hom(Cn−1, G)← · · ·

we then take the co-homology of this co-chain.
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If G is am Abelian group then we are homing in the category of Abelian groups. If G is a unital
ring then we are homing in the category of G-modules.

Note that this is the level of the chain. That is if Hom commuted with homology we would have
the same theory. The fact is that Hom does not commute with taking the homology of a chain and
therefore the groups of cohomology may be different to the groups of homology.

For homology the boundary map is

R[σn
i ]→ R[σn−1

i ]

∂(σn
i )

..=
∑
i

(−1)iσ|[v0,...,v̂i,...,vn]

this induces the following map on cochains

δ : Hom(R[σn−1
i ], R)→ Hom(R[σn

i ], R)

δ(ϕ) = ϕ(∂)

or in full
δ(ϕ)(σn) = ϕ

(∑
i

(−1)iσ|[v0,...,v̂i,...,vn]
)

A cocycle is an element of ker ∂, that is the kernel of the boundary and a coboundary is an element
of the image of the boundary map.

3 Relation to Homology
Our chain groups are all Zn and hence we need to see what Hom(Zn,Z) is. We know that Hom(Z,Z) =
Z analogously we have that Hom(Zn,Z) = Zn, with the maps being given by(

(k1, ..., kn) 7→
∑
i

miki
)
7→ (m1, ...,mn)

Lemma (Hatcher Ex. 43, §2.2). Any chain complex of finitely generated abelian groups splits as the
direct sum of the complexes

0→ Z→ 0, 0→ Z ×m−−→ Z→ 0

Homing this lemma tells us that the dual complexes have have the same homology groups except
tosion is shifted up one dimension.

Example (Hom does not commute). Consider the following complex

0 Z Z Z Z 0

q
C3

q
C2

q
C1

q
C0

0 2 0

where n is the map x 7→ nx. Then the dual chain is

0 Z Z Z Z 0

q
C∗

0

q
C∗

1

q
C∗

2

q
C∗

3

0 2 0
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Here we can see even though the chain is exactly the same the numbers are different. Lets compute the
homology and cohomology.

Hn(chain) =


Z, n = 3

0, n = 2

Z/2Z, n = 1

Z, n = 0

Hn(co-chain) =


Z, n = 0

0, n = 1

Z/2Z, n = 2

Z, n = 3

We can see that the degree 1 and 2 groups swap, actually the degree 1 group has been ”pushed up”.
THIS ALL FEELS VERY FORMAL, IT FEELS LIKE I SHOULD BE ABLE TO RELABEL THE
CHAIN SUCH THAT HOMOLOGY AND COHOMOLGY AGREE...? MAYBE THE DISTINCTION
BECOMES MORE PROFOUND FOR GROUPS OTHER THAN Z ? something about our modules
in the chain complex being free over a non-torsion group...?

We will now make the relationship between them precise.

Lemma. There is a split SES define the h
map

0→ kerh→ Hn(C;G)
h−→ Hom(Hn(C), G)→ 0

We can recall the general definition of Ext groups, however in the setting here we only need a base
case. Given an abelian group A then there is always a resolution by free abelian groups, an exact
sequence, of the form

0→ F1 → F0 → A→ 0

Apply Hom(−, G) and taking cohomology we get

F1∗ ← F0∗ ← A∗ ← 0

which is still exact. We lost exactness at the first group however (Hom is left exact, but not right
exact). Thus there may be a non-trivial homology at this point which we denote

Ext1(A,G).

Ext can be computed with the properties

• Ext(A⊕A′, G) ∼= Ext(A,G)⊕ Ext(A′, G)

• For F free Ext(F,G) = 0

• Ext(Z/nZ, G) ∼= G/nG

Theorem (Universal Coefficient Theorem). For a chain complex C of free abelian groups we have a
split exact sequence

0→ Ext(Hn−1(C), G)→ Hn(C;G)
h−→ Hom(Hn(C), G)→ 0

This is saying that Hom commutes with homology up to an Ext factor. This theorem can be applied
to make the statement about moving torsion precise. If Tn(C) ⊆ Hn(C) is the torsion subgroup of a
finitely generated free abelian group given by homology then

Hn(C,Z) ∼= (Hn(C)/Tn(C))⊕ Tn−1(C)
Hatcher says
somethign here
about taking
coefficients in
a field. This
would involve
taking them
not just in an
abelian group
(Z module)
but in a com-
mutative ring
(Z algebra).
Nothing should
change, how-
ever when we
get to the ext
term we need a
new definition
and going from
homology to co-
homology will
involve homing
as F modules?

Dualising arguments show that for a homology theory the dual will be a cohomology theory.
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4 Cup Product
Consider a unital ring R. The singular chain with the free R modules generated on simplicies. Consider
singular cohomology with coefficients in R, Hn(−;R). The cup product is a map

^: Ck(X)× C`(X)→ Ck+`(X)

(ϕ,ψ) 7→ ϕ ^ ψ

where ϕ ^ ψ is defined by linearly extending the map, where σ : ∆k+` → X, is a simplex

ϕ ^ ψ(σ) = ϕ(σ|[v0,...,vk])ψ(σ|[vk+1,...,v`])

Recalling that Cn(X) = Hom(Cn(X), R), and so the value of ϕ,ψ are in R and can be multiplied
there.

Well Defined on Cohomology We want this to be well defined on cohomology, it shouldnt take what is the re-
lationship with
the wedge prod-
uct on deRham
cohomology? Is
a product prov-
able aximoati-
cally?

elements out of the kernel nor the image. There is a simple formula that is helpful here.

δ(ϕ ^ ψ) = δϕ ^ ψ + (−1)kϕ ^ δψ

Proof. Some symbol pushing. Just write out the full expression for both.

From this we deduce the closure of the kernel: Let ϕ,ψ be cocycles. Then we want to show that
δ(ϕ ^ ψ) = 0, that is it is still a cocycle. By our formula we have that

δ(ϕ ^ ψ) = δϕ ^ ψ ± ϕ ^ ∂ψ = 0^ ψ ± ϕ ^ 0 = 0

Because we are moding the kernel by the image we also need to check that the image is closed under the
action of the kernel. That is we need that the cup of a coboundary with a cocycle is still a coboundary
(note that this also checks that the cup of two coboundaries is a coboundary because the image is
contained in the kernel). Applying our formular where WLOG ϕ is a coboundary and ψ is a cocycle
gives

δ(ϕ ^ ψ) = δϕ ^ ψ ± ϕ ^ δψ = ∂ϕ ^ ψ ± ϕ ^ 0 = ∂ϕ ^ ψ

hence the cup of a cocycle and coboundary (RHS) is a coboundary (LHS).
Thus we get an induced map

^: Hk(X)×H`(X)→ Hk+`(X)

there is also a relative version for A,B ⊆ X open

^: Hk(X,A)×H`(X,B)→ Hk+`(X,A ∪B)

If one of A or B was empty then this is the claim that vanishing on A or B is closed under taking
cup products. When they are both non-empty we first notice that the cup product on chains is well
defined

Ck(X,A)× C`(X,B)→ Ck+`(X,A+B)

where Cn(X,A+B) is the subgroup of Cn(X) given by cochains that vanish on sums of chains in A
and B. Then because A and B are open the inclusion

Cn(X,A ∪B) ↪→ Cn(X,A+B)

induces an iso on homology, giving us the desired cup product.
This then makes

H∗(X,A) ..= ⊕iH
i(X,A)

into a graded ring.
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Functoriality

Lemma. Maps on spaces induce ring homomorphisms:

f : X → Y =⇒ f∗(α ^ β) = f∗(α)^ f∗(β).

Proof. If we have f : X → Y inducing an R module homomorphism on chains then this is
just symbol pushing.

Lemma. The product is “(anti?)commutative”

α ^ β = (−1)k`β ^ α

when coefficients are taken in a commutative ring.

Proof. Its quite involved. Uses the proof in homology that homotopic maps are equivilent.
Come back?

There is also a relative version of this claim.

Open Problem: All groups are fundamental groups, are all rings cohomology rings?

4.1 Geometric Content of the Product
Cup products of nonzero classes occur when the loops intersect.

Example.

5 Kunneth Formula
There is another type of product, the so called cross product (or external cup product), if we take
coefficients in R below:

H∗(X)×H∗(Y )
×−→ H∗(X × Y )

a× b = p∗X(a)^ p∗Y (b)

where p are the respective projections.

X × Y H∗(X × Y )

X Y H∗(X) H∗(Y )

p1 p2 p∗
1 p∗

2

Explicitly we have that
a× b = ap1 ^ bp2.

This is bilinear, which means it is rarely a homomorphism and so rarely an isomorphism, however why
it will therefore induce a map

H∗(X)⊗R H
∗(Y )→ H∗(X × Y ).

This map is a homomorphism of R modules. We can make the tensor product into a ring via

(a⊗ b)(c⊗ d) ..= (−1)|b||c|ac⊗ bd

where |x| is the dimension of x, that is the degree of cohomology that it lies in. Then in some cases
we have described the ring structure on cohomology.
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Theorem. The cross product H∗(X) ⊗R H∗(Y ) → H∗(X × Y ) is an isomorphism if for every k,
Hk(Y ;R) is a finitely generated free R-module.

This gives us a way to understand the ring structure on the cohomology of the product via under-
standing the ring structure on the cohomology of the peices.

6 Poincare Duality
Theorem. Let M be a closed orientable manifold of dimension n, then there is an isomorphism for
all k of singular co/homology groups

Hk(M ;Z) ∼= Hn−k(M ;Z)

This can be given several generalisations for different classes of manifolds and different rings.

Theorem. If M is a closed R-orientable n-manifold then Hk(M ;R) ∼= Hn−k(M ;R).

As well as for manifolds with boundary (non-closed)

Theorem. Let M be a compact R-orientable n-manifold, such that the boundary decomposes as the
union of two (n − 1)-dimensional compact manifolds, called A and B, such that ∂A = ∂B = A ∩ B.
Then there is an isomorphism

Hk(M,A;R)→ Hn−k(M,B;R)

or for punctured manifolds

Theorem. If K is a compact, locally contractable subspace of M a closed orientable n-manifold then

Hi(M,M −K;Z) ∼= Hn−i(K;Z)

Finally for non-compact manifolds we need to define a different cohomology of “compact support”
which gives

Theorem. There is an isomorphism Hk
c (M ;R) ∼= Hn−k(M ;R) for M an R-oriented n-manifold.

There are more generalisations and cases too, involvind different cohomology theories (Cech) too.
Apparently this is all just an application of Spanier-Whitehead duality.

6.1 Algebraic Manifold Theory
We will try to present the proof of the following version

Theorem. If M is a closed R-orientable n-manifold then Hk(M ;R) ∼= Hn−k(M ;R).

so henceforth we will consider only closed (no boundary, compact) manifolds.

6.1.1 Dimension

The dimension of a manifold is given by the local homology that is homology relative to everything
but a point; for example with integral coefficients

Hi(M,M − {x}) ∼= Hi(Rn,Rn − {0})
∼= H̃i−1(Rn − {0})
∼= H̃i−1(S

n−1)

=

{
Z, i = dim(M)

0, else
Where the first step we used excision on everything but a local chart of x, then we used that Rn is
contractable to go to reduced homology. huh?
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6.1.2 Orientability

An orientation is intuitively sort of fixing an ordering on a basis? Or its like fixing a north pole, or
like fixing an “up”? what..?

[Hatcher] Whatever an orientation of Rn is, it should have the property that it is preserved
under rotations and reversed by reflections.

For R2 the notion of clockwise has this property, for R3 the notion of right-handed has this property.
We define an orientation on Rn at a point x to be a generator of Hn(Rn,Rn − {x}) ∼= Z, that is the
same as fixing an isomorphism with Z . didnt under-

stand how this
satisfies the
properties.

If B ⊆ Rn is a ball containing both x and y then there are canonical isos

Hn(Rn,Rn − {x}) ∼= Hn(Rn,Rn −B) ∼= Hn(Rn,Rn − {y})

Thus fixing an orinentation at x fixes one on all of Rn via these isomorphisms. As we earlier remarked
by excision we know that Hn(M,M −{x}) ∼= Hn(Rn,Rn−{0}) ∼= Z and so we can immediately define
an orientation at x in an n-dimensional manifold to be a generator of this group too. We will denote

Hn(X|A) ..= Hn(X,X −A)

the local homology of X at A.
We need to make our choice of local orientation consitent across the whole manifold. So we define

an orientation on an n-dimensional manifold M is an assignment

µ :M → ∪xHn(M |x)

sending each x to µx ∈ Hn(M |x) a local orientation such that around every x ∈M there is a chart U
whose local homology Hn(M |U) has a generator µU and moreover for every y ∈ U µy is the image of
µU under the natural map

Hn(M |U)→ Hn(M |y).
There is a ball whose homology generator can be taken as the local orientation everywhere in the ball.

If an orientation exists on M we call it orientable.
This was for integral coefficients. Can we make sense of the same thing with coefficients in a ring

R? An R-orientation of M is an assignment

µ :M → ∪xHn(M |x;R) ∼= R

assigning a generator, or equivilently a unit in R, an element u such that Ru = R, at each point,
subject to the same local consistency condition.

To prove things about orientations we will reformulate them in terms of coverings and sections.

6.1.3 Orientation as a Section

6.1.4 Comparing R-Orientability and Orientability

Theorem. An orientable manifold is R-orientable for all R. A non-orientable manifold is R-orientable
iff R contains a unit of order 2.

6.1.5 Orientability as a Condition on Homology

Theorem. If M is closed connected n-manifold then

• If M is R-orientable then for all x ∈M the map

Hn(M ;R)→ Hn(M |x;R)

is an isomorphism
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• If M is not R-orientable then the map above is injective with image {r ∈ R : 2r = 0}.

Lemma. Hi(M ;R) = 0 for i > n.

So in particular Hn(M ;Z) is 0 depending on whether M is orientable or not.

6.1.6 Fundamental Class

A fundamental class for M is an element of Hn(M ;R) whose image in Hn(M |x;R) is a generator for
all x.

Lemma. M is R-orientable iff M has a fundamental class.

Proof.

6.1.7 Cap Product

Let X be a space and R be a ring.

_: Ck(X;R)× C`(X;R)→ Ck−`(X;R)

σ _ ϕ ..= ϕ
(
σ|[v0,...,v`]

)
σ|[v`,...,vk]

It is again a symbol pushing exercise to check that this defines a cap product on

Hk(X;R)×H`(X;R)→ Hk−`(X;R)

which is R linear in each variable. There is again a relative version of this cap. There is again a notion
in which a map on spaces defines a map on this “product”, f : X → Y then

f∗(α)_ ϕ = f∗
(
α _ f∗(ϕ)

)
We can relate this to the cup product via

ψ(α _ ϕ) = (ϕ ^ ψ)(α)

where ψ, α and ϕ are on the level of chains (not yet taken co/homology). Thus at least at the level of
chains cap and cup are dual in the sense that

ϕ ^= (_ ϕ)∗ : Hom((C`;R), R)→ Hom(Ck+`(X;R), R).

At the level of homology this will only be true when Hom commute with taking homology, for example
if R is a field.

6.1.8 Cohomology with Compact Support

The strategy of the proof will be to use Mayer-Vietrois. We want some inductive case for the use of
Poincare duality for open subsets of our compact manifolds for the Mayer-Vietoris sequence. This is
just not true for singular cohomology so we need to introduce a different cohomology that will play
the role on the open subsets. This is cohomology with compact support.

Consider the subgroup of the singular cochain groups Ci
c(X;G) consisting of cochains ϕ : Ci(X)→

G such that there exists a compact K ⊆ X on which ϕ is zero on all chains in X−K. Such a cochain is what is a chain
in this space?
They mean a
linear combina-
tion of simpli-
cies where the
image of all sim-
plicies is con-
tained in that
set?

called compactly supported. This forms a subcomplex of the singular complex (boundaries preserve
compactness). Therefore we can take the cohomology of this subcomplex, which we denote H∗

c (X;G)
called cohomology groups with compact support. This can also be described as

Hi
c(X;G) = lim

K compact
Hi(X|K;G)

Cohomology with compact support is rubbish:
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• It is not functorial; only a proper map, a map such that the preimage of compact sets is compact,
will always give a map on compact cohomology

• Cohomology with compact support is not a homotopy invariant (homotopic spaces have different
compact cohomology).

This has convinced me that I can safely ignore them as a technical tool for this proof and not internalise
them. What is the right way to prove Poincare Duality....

6.2 Proof of Poincare Duality
The full statement of Poincare duality is now: If M is a closed R-orientable n-manifold then caping
with a fundamental class [M ] defines an isomorphism for all k

DM : Hk(M ;R)→ Hn−k(M ;R),

α 7→ [M ]_ α.

Note that our M is compact so in particular H∗
c (M) = H∗(M). Actually this proof works for a

slightly more general class of manifolds.

Step 1: If M = U ∪ V for open U and V , and DU , DV , DU∩V are all isomorphisms then so is DM . This uses com-
pact cohomol-
ogy

Step 2: If M is the union of a sequence of opens U1 ⊂ U2 ⊂ · · · and each DUi
is an iso then so is

DM . This uses com-
pact cohomol-
ogy

Step 3: Now we prove the case of M = Rn. It is clear that Rn ∼=
◦
∆

n

, the interior of the n-simplex.
Therefore we have that

H∗(Rn) ∼= H∗()
Maybe the
proof of
Poincare dual-
ity for DeRham
is more infor-
mative? Proba-
bly not... Does
that even make
sense?
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